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Abstract--The motion and the associated phenomena of a monodisperse spray undergoing evaporation

in an isothermal or adiabatic gas stream are investigated theoretically. Particular emphasis is placed

on initially cold flows that may lack sufficient energy to achieve complete spray vaporization. Expressions

are derived for the spacial variations of droplet velocity and size, the gas velocity and temperature,

and a criterion on the initial conditions for complete spray vaporization. The relative importance of
various factors affecting rapid vaporization over short distances are discussed.

NOMENCLATURE

ratio of molecular weights of inert gas to fuel;
transfer number;

heat capacity;

», drag coefficient;

binary diffusion coefficient;

L, specific heat of vaporization;

o

a0®mA

A

M, non-dimensionalized mass evaporation rate;
r, radial distance from center of droplet;

oo radius of droplet;

F, H rffrs

R, gas constant of fuel vapor;

Re, Reynolds number;
S¢,  Schmidt number;
t, time;

T, temperature;

T,, temperature at boiling point of fuel;
u, velocity;
X, axial distance in chamber;
Y, mass fraction.
Greek symbols
&, initial mas. flux fraction of fuel;
YR 5
o, density;
i, viscosity coefficient.
Subscripts
<, condensed phase;

F, fuel vapor;
4 gas phase;

0, initial state;
s, droplet surface.
INTRODUCTION

STUDIES on spray behavior find applications in a
variety of practical situations. Some examples are fire
suppression, insecticide spraying, spray drying, and in
many forms of chemical powerplants which introduce
one or more of the reactants into the reactor in the
form of spray.

The characteristics of a spray can be statistically
described by a spray equation [ 17, which is analogous
to the Boltzman equation in the kinetic theory of gases
with the exception that the spray distribution function
may also depend on the sizes of the droplets char-
acterized by their radii r,. The properties of the spray-
gas ensemble can then be obtained by solving this spray
equation together with the various conservation
relations.

Only some simplified solutions have been obtained
for this system of equations. Probert [2] analyzed the
steady-state combustion of a dilute spray in a variable-
area, quasi-one-dimensional liquid rocket chamber. By
assuming the effects of droplets on the gas are negligible,
the combustion efficiency of the chamber was deter-
mined by directly relating the amount of heat release
to the mass reacted.

Spalding [3, 4] obtained analytic solutions for the
combustion of monodisperse spray in a constant area
liquid propellant rocket chamber. The momentum ex-
change process between the gas and the droplets was
described by a modified Stokes law accounting, ap-
prozimately, the reduction in drag due to the outward
mass transfer at the droplet surface. The phase change
process was described by the d%-law for droplet com-
bustion, modified by the Frossling [5] correction factor
to account for the increase in the burning rate due to
the relative motion between the droplets and the gas.
Both finite and infinite gas-phase reaction rates were
considered.

The present paper extends Spalding’s model to spray
vaporization in an adiabatic environment. Particular
attention is placed on such practical situations as in the
automotive induction system where the inlet air is quite
cold such that the continuous enrichment (with fuel
vapor) and the chilling of the gas from the vaporization
process may result in a significant reduction in the
driving force for vaporization. In severe cases vapor-
ization may terminate altogether. Incomplete fuel
vaporization prior to ignition results in droplet diffu-
sional burning in the combustion cylinders, which
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could be a significant source of the total nitric oxide
emissions from the engine.

The governing equations are presented in the next
Section. In Sections 3 and 4, the cases of adiabatic
evaporation and isothermal evaporation or combus-
tion are discussed. Resulis are presented in Section 5.

2. GOVERNING EQUATIONS

This study is concerned with a steady, one-dimen-
sional, constant area, constant density, two-phase flow
involving evaporating droplets moving in a gaseous
stream. For consistency, we shall term the vaporizing
species as the fuel, all the other gas phase species as
inert gas, and all the gas-phase species simply as gas.

At the entrance plane located at x = 0, droplets
with uniform radius r,, and velocity 4, are injected
evenly over the inlet cross-section into a gaseous stream
with velocity u,o, where the subscripts ¢, g and 0
designate the condensed phase, the gas phase and the
initial state respectively. The initial mass flux fractions
of the condensed and vaporized fuel are e and ¢,
respectively. The gas has a constant density p, and an
inlet temperature T,o. Mixing between either the fuel
vapor or the combustion products with the ambient
gas flow is assumed to be infinitely fast such that
macroscopic property uniformity exists at sach cross-
section of the chamber. The behavior of this two-phase
system is governed by the following equations.

{(a) Droplet evaporation rate

When the gas-phase diffusion of mass and heat are
rate-limiting for the evaporation process, it is shown
in the Appendix that the rate of decrease of the square
of the droplet radius r, is given by

dr?/dt = —(2p,D/p,)In{1+B) (1

where D is the gas-phase binary diffusion coefficient,
p. the droplet density, and B an evaporation transfer
rmber defined as

B=(C/L)(T,~T) @

with C being the specific heat at constant pressure and
L the specific heat of vaporization,

Figure 8 in the Appendix illustrates that for vapor-
ization in a relatively hot ambient gas stream, 7T, can
be approximated by the droplet boiling point T,.
Furthermore, since 7, also is not expected to be
changed much by the vaporization process, B, as given
by equation (2), is approximately a constant.

During vaporization in a relatively cold ambient gas
stream, B ceases to be a constant. Under this situation
the evaporation process can significantly change T,
whereas T, is also a sensitive function of T, and ¥,
{Fig. 8), where Yz, is the fuel vapor fraction in the gas
stream.

When a relative velocity exists between the droplet
and the ambient gas, Frossling [5] has shown that the
droplet evaporation rate, equation (1), is increased by
a factor

F(Re, Sc) = 1+ 0-276]Re| /38?3 3)

C. K. Law

where Re = 2p (u,—u)r./u and Sc = pf(p,D) are the
Reynolds and Schmidt numbers respectively, and p is
the gas-phase viscosity coefficient. The correction
factor equation (3} has also been found to be applicable
to burning droplets {6].

(b) The drag law

The rate of change of the droplet velocity u,, caused
by the drag force acted on it by the gas motion, is
given by

duc/dt = (3/8)(pg/pc)[(ug“ uc)z/rc] CD (4)
where the drag coefficient Cp, is given by [4],
Cp = [Re 'K(Sc)F(Re, Sc)]G(B). 5

The term within the square bracket in equation (5)
provides a close approximation to the experimentally
determined drag coefficient curve for a solid sphere. The
function K(S¢) depends only on the constant parameter
Sc and hence is itself a constant for a given system.
It is to be determined in such a way that for a given Sc,
the prescribed Cp agrees most closely with the experi-
mentally determined values. For Sc = 0-72, it was found
that with K = 22 such close agreements (Fig. 1) exist
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F16. 1. Various experimental and theoretical curves for
the drag coefficient of solid spheres.

with both the standard drag curve and the results of
Ingebo [7]. It may also be noted that the insertion
of the function F(Re, Sc) into the definition of Cp not
only improves the accuracy in describing the drag force
on the droplets, it also simplifies the subsequent
mathematical developments. Spalding [4] originally
recognized the mathematical simplification offered by
such a choice and incorporated it in his analysis, with
K = 24, based on the argument of Reynolds analogy.
The second term in equation (5) accounis for the
reduction in drag due to the outward mass transfer at
the droplet surface during evaporation. Various forms
of G(B) have been suggested and experimentally tested
[8], although a definitive choice is still unavailable [9].
In the following formulation when B, hence G(B), can
be considered a constant, the functional form of G(B)
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is left unspecified. When B varies, in the absence of
clear superiority, we use the form suggested by
Spalding [4],

G(B)= B 'In(1+B) )

which is the ratio of mass transfer to heat transfer,
hence mass transfer to momentum transfer through
Reynolds analogy, for a stationary droplet. For a slowly
vaporizing droplet B « 1, hence G(B) ~ 1 and the drag
reduction is minimum. Further discussions on equation
(5) can be found in [10].

{c} Mass conservation
The overall mass conservation can be expressed as

ug/qu =1+ [sc/(l "’8c)] {1 “"3/?'30}- N

At this stage the functional forms of T, and T,
which appear in the definition for B, are still unspecified.
As will be discussed in Sections 3 and 4, their relations
with other flow variables depend on the energy ex-
change process between the condensed and gaseous
phases.

(d) General solutions
Defining the non-dimensionalized variables as
Fc = rc/rc()! ag = ug(l ""gc)/ug()’ at = uc(l _Ec)fugﬂs
t=1-1[2p,DIn(1+Bo)}/[p. 151,
%= x[2(1 —e)p, DIn(1 + Bo)}/[pcup0r],
S = [G(B,)/In(1 + B,)}ScK(Sc)/16,
and by using the transformed variables w = 1 —#° and
U = d,—1,, where @ and U respectively represent the
mass fraction of the droplet that has vaporized at £,
and the instantaneous relative velocity between the
droplet and the gas, the governing equations become

deo/df = —(3/2)(1 —w)!/3
x [In(1+ B)/In(1 + B,)]F(Re, Sc) (8)
dU/df = di, /dF +(3/2)
x [SU(1—w)~*3/G(B,)]F(Re, Sc)G(B) (9)
g, = 1—g(l—w) (10)
where
F(Re,Sc) = 1+ Z|U|"*(1 —)"/®
Z = 0-276Re}*Sc\?
and

Re() = (2pgug0rc0)/[:u(1 -—60)]-

The additional advantage in introducing the function
F{Re, Sc} into the definition of C, now becomes ap-
parent. Dividing equation (9) by equation (8), and using
equation (10), the non-linearity in U appearing in
F(Re, Sc) as well as the dependence of U on Z, can
be removed by using U and w as the dependent and
independent variables respectively. Furthermore, if B
is only a function of o, then U(w) is described by a
first order, linear, ordinary differential equation whose
solution is

U(w) = [p(a))]*{ac Jm plo)do’ + U(O)} (11)
0
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where
plw) = exp{ f (51— )] [G(B)/G(B,)]

x [In{1 + Bo)/In(1 + B)] dw’} (12)

and
U©) = 1 —e. . (13)

Equation (11) shows that as w — 1, U(w) — 0 as would
be expected.

Once U{w) is determined, the location of the droplet
can be found by using equation (8) and the identity

deo/df = —ii,(dw/d%) (14)
such that
=~ — @ [ag_' U((D’)]
Hw)= L (3/2)(1- )" F(Re, S0)
In(1+Bo) , |,
X iniiag) @ 19

The distance £* over which complete vaporization of
the droplets occurs is of particular interest and is
given by

£ = %(1) (16)

It is significant to note that the initial droplet size
r.p does not appear in the non-dimensionalized govern-
ing equations. Therefore results from the present
analysis are applicable to all values of r.o. Furthermore
from the definition of X it is seen that the chamber
length x is proportional to rZ, hence leading to the
important conclusion that fine atomization is the key
factor in achieving fast vaporization over a short
distance.

Finally we note that for constant Schmidt number
the parameter S varies inversely with the initial transfer
number B,. Hence large and small values of S corre-
spond to slow and fast rates of vaporization respec-
tively.

In the following, the functional forms of B will be
specified. Two limiting and physically important cases
will be examined where the solutions are relatively
straightforward.

3. ADIABATIC EVAPORATION

In the present case the evaporation process con-
tinuously cools and enriches the gas stream, both of
these effects, in turn, adversely affect the evaporation
rate. In extreme cases when a large amount of liguid
fuel is injected into a sufficiently cold gas stream, com-
plete vaporization of the droplets may not be possible.
When the gas stream temperature and fuel vapor con-
centration reach the corresponding dew point values,
vaporization and condensation take place at equal rates
and an equilibrium state is reached for the two-phase
system. Results from the Appendix indicate that the
evaporation process is influenced most significantly
by changes in the ambient conditions when the ambient
temperature is refatively cold, say T,/T; < 1.
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To complete the set of governing equations, ex-
pressions are needed for the ambient fuel vapor con-
centration and temperature, as well as the droplet tem-
perature as functions of say, w

From definition, the fuel vapor concentration is
given by

Yoy = (e +e,)/(1

—&.+ &) a7

Since the flow is assumed to be incompressible,
hence low speed, the kinetic energy of the flow com-
ponents can be neglected compared with their respec-
tive thermal energy. Conservation of energy is hence
expressed as

#, Tyt e(l—o)(Ti—1) = @y To+&(To—1) (18)

where T = CT/L, and it has been assumed that the
specific heat C for the gas and liquid are the same.

Using equations (10) and (18), T; can be expressed
as a function of w. Substituting ¥, and T, into Y
given by equation (A6), noting that T, = T;, it is found
that Y, is only a function of T;, but not . Hence Yg,
and T, can be determined by solving this function
together with an independent relation between Yz, and
T. that describes the phase change mechanisms at the
droplet surface (e.g. the Clausius-Clapeyron equation,
equation (A7), for equilibrium vaporization). Since w
does not appear in both relations, we reach the con-
clusion that Yz, and T, are constants in the system,
given by

T.=To (19)

and
(20)

T, is the initial evaporation transfer

YFs = [B0+£g/(1 —SC)]/(I +BO)

where By = T,o—
number.

Physically since T, is elevated and lowered, respec-
tively, by the continuous enrichment and cooling of the
gas stream, the present result indicates that these two
opposing effects balance each other.

With the above constant established, the tedious
iterative process (see Appendix) of determing the drop-
let temperature variation during its motion is thus
unnecessary. The subsequent mathematical analysis is
greatly simplified.

The transfer number B for vaporization is then given
by the relation

(1+B) = (14 By)[1 —e.w/(1

Since vaporization occurs only for B > 0, equation
(21) implies that a necessary condition for complete
spray vaporization (w = 1) is

By > ¢ /(1 —¢.).

—g+ew)] 21

22

If equation (22) is not satisfied, evaporation ceases
when B = 0, leaving droplets with an equilibrium size
given by
F.=[1—By(1 —sc)/sc]”z’ .
With B given by equation (21) and by using equation
(6), equation (12) can be readily integrated, giving

pl@) = {(1 = [e./1—&)BoJe) 51 * 21— )} (24)

(23)

C. K. Law

where
B =S/(1—e)(1+By)—1].

For By > ¢./(1—¢,), the numerator in p(w) can be
expanded, giving U (a)) to first order approximation, as

S [1- —w)‘z_’”]}+ U(O)}

(2 ﬂ)
(1-w)?
% (1—aw) (23)

where

o = & B/[ Bo(1+ Bo)].
It may be noted that o > 0, § > 0 in this case.
With U(w) known, equations (15) and (16) then give
the function %(w) and the minimum length for complete
vaporization, X*, respectively.

4. ISOTHERMAL EVAPORATION AND COMBUSTION

A very simple solution to equation (11) can be
obtained by assuming B is a constant such that

is the needed energy equation. In addition to its
application for burning sprays in liquid rocket com-
bustion [3] where an approximately constant com-
bustion transfer number [1] exists, equation (26) can
also be used for spray vaporizing in a chamber with
external heat being added in such a way that (T,—T)
remains constant. Finally, it is also the zeroth order
approximation for B in equation (21) for spray -apor-
ization involving a small &, in a hot atmosphere such
that the condition B,y » &./(1 —¢,) is satisfied.
U(w) is now given by

U(w) = (1—o)*{[e./(1-5)]
x [1=(1 =)t "9+ U©O).

It may be noted that in the present case the constant B,
appears in the solutions only indirectly through the
definition of S, which together with ¢, Z and .,
completely characterize the problem. For the adiabatic
evaporation case By is an additional parameter.

For the special case of F = 1, explicit expressions
can be obtained for X(w) and x* as’

o 1 04e.S 25
XA =0 /1)+(1_S)(1 A%2)
L UO)+e/1=8) s
(1+1-58) N
and

2 =[O0+ 1:55(1 = 0de,)]/[1 + 1-55]

where 4 = F,

Equation (27) indicates that U — U(0)and O as S — 0
and oo respectively, implying that over most of their
lifetime droplets in systems with large and small S tend
to be in, and out of, phase with the gas velocity
respectively.

29
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5. RESULTS

We first present results for the isothermal case
because the solutions are simpler and phenomena
common to both the isothermal and adiabatic cases
can thus be investigated with reduced amount of
computation.

Based on the facts that G(Bg)In(1+ B,) ~ By !, that
the values of B for vaporizing and burning droplets
are usually in the ranges between 0-1 to 1 and 5 to 10
respectively, and that ScK(Sc)/16 is on the order of
unity, the values of S are varied from 01 to 20 in
the present investigation, with small and large values
of § corresponding to burning and vaporizing droplets
respectively. The range of Z is varied from 0 to 2,
corresponding approximately to values of Re, between
0 and 50.
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Fi16. 2. Relative velocity, U, as function of the
fraction of fuel vaporized, w, for the isothermal
case.

Figure 2 shows the variation of the relative velocity,
U, with the amount of liquid fuel vaporized, w, for the
extreme cases of slow evaporation (S = 20) and fast
burning (S = 0-1). For S = 20, the droplet is dragged
to follow the main gas motion early in its lifetime, The
relative velocity U is less than 0-01 when only 20 per
cent of the mass has vaporized. For § = 0-1, the burning
droplet lags behind the gas motion over most of its
lifetime. U is still 0-8 when about 90 per c¢ent of its
mass has been consumed. During the last stage, how-
ever, the droplet adjusts rapidly to follow the mean
gas motion due to the much increased drag it experi-
ences as its size approaches zero.

Figure 3 shows the dimensionless location of the
droplet as function of w. The optimum chamber length
%* for complete consumption, is significantly longer
for vaporizing droplets than for burning droplets. Since
the chamber length x is normalized by the evaporation
rate, viz, In{1+ Bg), the difference in £ shown in Fig. 3
exhibits only the effect of drag reduction due to the
outward mass transfer at the droplet surface. Hence
such a difference will be even greater when the chamber
length is expressed in dimensional form since

1289

10

o8-

06—
X

o4k

02

//
/// 5=0-1
o —r L=
0 o2 o4 06 o8 0

w
F1G. 3. Droplet location % as function of

the fraction of fuel vaporized, w, for the
isothermal case.
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FiG. 4. Effect of droplet injection velocity i, on the
optimum chamber length x*, for the isothermal case.

x ~ %/In(1 + By). Itis also shown that the droplet covers
a proportionately longer distance during the last stage
of its lifetime, particularly when § is small. Hence for
low injection velocity flows, a significant reduction in
the chamber length can be achieved by requiring that
most, but not all of the droplets are vaporized.

Figure 4 shows the effect of droplet injection velocity
fi.o on X*. For droplets with small § values ¥* vary
approximately linearly with d,,, indicating the absence
of significant drag on the droplet motion. For large S,
however, x* is almost insensitive to ., because the
droplet now adjusts rapidly to the gas motion after
injection. It can thus be concluded that injection
velocity is critical in the design of burners involving
burning or fast evaporating droplets, and should be
kept to as low a value as possible, assuming other
factors remain constant. Figure 4 also shows that a
local maxima in X* exists when the injection velocity
o is mear the inlet gas velocity, #,, as would be
expected physically. These local maximas do not exist
for Z = 0 where X* is a linear function of 4.
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F1G. 5. Optimum chamber length ¥* as functions of S and Z,
with ¢, = 0-05, for the isothermal case.

Figure 5 shows x* as functions of § and Z, with
zero injection velocity and for ¢, = 0-05. It can be seen
that increasing Z decreases X* since the droplets are
now evaporating or burning faster in the presence of
increased forced convection. The decrease in x*, how-
ever, is more prominent for small values of S. From
Z =0 to 2, the reductions are 8 and 50 per cent for
S = 20 and 0-1 respectively. This is because the ben-
eficial effect of augmenting the evaporation rate due
to an increase in the initial Reynolds number Re,
quickly disappears as U — 0 for the large § case but
persists throughout most of the droplet lifetime when
S is small. Finally, results from Figs. 4 and 5 lead to
the conclusion that for burners involving combusting
or fast vaporizing droplets, an important design cri-
terion is that the gas inlet velocity should be much
greater than the droplet injection velocity.

Results of the adiabatic case are presented in the
following. To completely characterize the problem, an
additional parameter, B,, apart from §, ¢, #i;o and Z
is needed. Noting that for the present case S =
ScK(Sc)/(16By), and using Sc = 0-72 and K = 22, we
obtain By, = 0-99/S. Results presented below are for this
special case, which is usually valid in many practical
solutions.

Figure 6 shows %* as functions of S and Z for @i, =0
and g, = 0-05.For § > 1, due to the continuous decrease
in the gas temperature, X* is significantly longer than
the corresponding situation in the isothermal case. As
required by equation (22), a maximum S, hence a
minimum By, exists beyond which complete vapor-
ization is not possible. As S approaches this value X*
grows exponentially large. Since By is extremely small
under these situations, a small increment in the inlet
gas temperature Tyo can produce a substantial increase
in By and hence a significant reduction in X*,

For small values of S such that By » ¢./(1—¢.), the
adiabatic results are similar to those obtained for the
isothermal case, as expected.

Figure 7 shows the location of the droplet as function
of w for § = 15 and ¢, = 0-0S. It is seen that the droplet
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FiG. 7. Droplet location ¥ as function of the
fraction of fuel vaporized, w, for the adiabatic
case.

covers a substantial fraction of ¥* during its last stage
of evaporation when the gas stream becomes very cold.
Hence a significant reduction in the chamber length
can be achieved if one aims for slightly less than
complete spray vaporization in the chamber. In Fig. 7,
for Z = 0,25 and 40 per cent reductions in the chamber
length can be achieved by aiming to vaporize only
95 and 90 per cent of the spray respectively.

6. CONCLUSIONS

The motion of an ensemble of monosize droplets
undergoing evaporation in an adiabatic or isothermal
gas stream has been investigated. It is shown that the
temperature of the droplets remain constant during
their motion, that fine atomization is a key factor in
achieving fast vaporization of the spray, that for rapidly
and slowly vaporizing droplets the values of x* depend
sensitively on the injection velocity and the inlet gas
temperature respectively, and that a significant reduc-
tion in the chamber length can be achieved by aiming
to vaporize most, but not all, of the spray.
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APPENDIX
Quasi-Steady Evaporation of Droplets

We consider herein the spherically symmetric, quasi-
steady, isobaric, gas-phase mass and heat diffusion con-
trolled evaporation of a droplet in a quiescent, unbounded
atmosphere with known properties T, and Yz,. By further
assuming that the various transport coefficients and specific
heats are constant, and that the Lewis number is unity, the
non-dimensionalized diffusion equations for the fuel vapor
concentration Yz and temperature T are [1]
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where M = ~[p./(2p,D)]dr?/dt and f = r/r, are the non-
dimensionalized mass evaporation rate and radial distance r
from the center of the droplet respectively, and the subscript
s designates conditions at the droplet surface such that r,
and T, here respectively correspond to r. and T, in the
main text.

Integrating equations (A1) and (A2) between 7 and the
ambient gas conditions at infinity, the spacial distributions
of the fuel vapor and temperature are found to be

Yr = 1—(1 = Yr,)exp(— M/f) (A3)
T=-(1-T)+U+T-T)exp(-M/P).  (A4)

Evaluating equations (A3) and (A4) at the droplet surface
and solving, the expressions for M and the fuel vapor concen-
tration at the droplet surface, Y, are given by

M =In(1+T,—T)
Yo, = 1=(1= %1+ T,-T)

(A3)
(A6)

in terms of one unknown, T;. Equation (AS) is identical to
equation (1) with B given by equation (2).

An independent relation between T, and Yi, can be ob-
tained through a description of the phase change process
at the droplet surface. For equilibrium vaporization such a
relation is given by the Clausius—Clapeyron equation,

Y, = (1= A)+ Aexp[ — (Co/T) + o/ TI]} ! (A7)
where C, = C,/R, A is the ratio of the average molecular
weight of the inert gas to the molecular weight of the fuel,
and R is the gas constant of the fuel. Equating equations (A6)
and (A7), T, can be solved iteratively.

Figure 8 shows a typical set of solutions for water droplets
vaporizing in air. To the left and right of the dew point line,
corresponding to M = 0, condensation and vaporization
occur respectively. It is shown that in a relatively cold
ambient atmosphere, say T,/T, < 1, T;, hence the rate of
vaporization, is a sensitive function of the ambient tempera-
ture and fuel vapor concentration; the latter in particular.
The sensitivity decreases rapidly as T, increases. Hence for
vaporization in a hot environment, say T,/T,>2, B=

dY,/df = — M(1 - Yp)/#? (A1) T,—T, can be essentially treated as a constant, independent
. 2 of variations in ambient conditions. Finally we note that
dT/df = M(1+ T T)# (A2)  when T)/Ty» I, T,/Ty ~ 1.
o vi 1
/
05
08 o /
. /
Ol );_g:0.0
005
06
’\Q
N
f )
oal-
Oew point line
o2
1 |
0 I 2 3
e/ T

FiG. 8. Droplet temperature as functions of ambient temperature and vapor
concentration for water droplets vaporizing in air.
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THEORIE DE LA VAPORISATION D’'UN BROUILLARD PULVERISE MONODISPERSE
DANS LES SYSTEMES ADIABATIQUES ET ISOTHERMES

Résumé—On étudie par voie théorique le mouvement et le phénoméne associé d’évaporation a laquelle
est soumis un brouillard pulvérisé monodispersé dans un courant gazeux isotherme ou adiabatique. Une
importance particuliére est donnée aux écoulements initialement froids auxquels peut manquer I'énergie
suffisante pour une vaporisation compléte du brouillard. On a obtenu des expressions pour les variations
spatiales des vitesses et dimensions des gouttelettes, la vitesse et la température du gaz, et un critere
portant sur les conditions initiales assurant une vaporisation compléte du brouillard. L’importance
relative des divers facteurs qui affectant la vaporisation rapide sur les courtes distances fait I'objet
d’une discussion.

EINE THEORIE ZUR VERDAMPFUNG VON MONODISPERSEM SPRAY
IN ADIABATEN UND ISOTHERMEN SYSTEMEN

Zusammenfassung—Die Bewegung und das damit zusammenhingende Phénomen der Verdampfung
eines monodispersen Sprays in einem isothermen oder adiabaten Gasstrom werden theoretisch untersucht.
Es wird besonders betont, daf} die kalte Anfangsstrémung nicht geniigend Energie besitzt zur vollstindigen
Sprayverdampfung. Es werden Beziehungen abgeleitet fiir die rdumliche Verteilung der Tropfchen-
geschwindigkeit und- groBe, der Geschwindigkeit und Temperatur des Gases und ein Kriterium fir die
Anfangsbedingungen fiir vollstindige Sprayverdampfung. Es wird die relative Bedeutung von ver-
schiedenen Faktoren diskutiert, die eine schnelle Verdampfung tiber kurze Distanzen bewirken.

TEOPUSA MOHOJMUCIIEPCHOI'O PACIBUIMTEJIBHOI'O MCITAPEHUA B
AIJUABATUYECKUX U M3O0TEPMHUYECKUX CHUCTEMAX

Anmorauusa — JJ18 CTpy¥ MOHOOHCIIEPCHBIX Kallellb, MCIapAIOLIMCXsl B M30TEPMHYECKOM HIIM aaMa-
6aTHYECKOM [OTOKE Ira3a, IPOBENEHO TEOPETHYECKOEe HCCIIEAOBAHNE JBHKEHHS M APYTHX CBA3AHHBIX
C 3TUM NPOLECCOM SABJICHHIA.

Oco60 0bpaineHo BHUMaHHUE HA CJTy4ail, Koraa NOTOK BHaYalie ABJISETCH XONOAHLIM U He obllagaeT
KONHMYECTBOM JHEPrHH, HEOOXOAMMBIM [JIA IOMHOTO HMCNAPEHHs Xaliellb. BriBeNEHb! BBIpaXeHHS
IJIA NPOCTPAHCTBEHHBIX M3MEHEHMM CKOPOCTH M pa3Mepa Kanelb, CKOPOCTH H TeMIlepaTyphl rasa
M KPHTEpHi HaYaNbHbIX YCJIOBUH IOJMHOTO HCOAPEHHS CTPYH. PacCMOTpEHa OTHOCHTEILHAA 3HA4YH-

MOCTb Pa3/TMYHbIX GAKTOPOB, BIAMSIOIINX HA GBICTPOE HCAPEHHE Ha MAJIBIX PACCTOAHMSAX,



