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Abstract-The motion and the associated phenomena of a monodisperse spray undergoing evaporation 
in an isothermal or adiabatic gas stream are investigated theoretically. Particular emphasis is placed 
on initially cold flows that may lack sufficient energy to achieve complete spray vaporization. Expressions 
are derived for the spatial variations of droplet velocity and size, the gas velocity and temperature, 
and a criterion on the initial conditions for complete spray vaporization. The relative importance of 

various factors affecting rapid vaporization over short distances are discussed. 

NOMEN&LA~~ 

ratio of molecular weights of inert gas to fuel; 
transfer number; 
beat capacity; 
drag coeflicient; 
binary diffusion coefficient ; 
specific heat of vaporization; 
non-dimensionalized mass evaporation rate; 
radial distance from center of droplet; 
radius of droplet; 

rir?i 
gas constant of fuel vapor; 
Reynolds number; 
Schmidt number; 
time; 
temperature; 
temperature at boiling point of fuel; 
velocity; 
axial distance in chamber; 
mass fraction. 

Greek symbols 

s, initial masJ flux fraction of fuel; 
A, ?Z; 

PI density; 

& viscosity coefficient. 

Subscripts 

s, 
condensed phase; 
fuel vapor; 

99 gas phase; 

9 initial state; 

s, droplet surface. 

INTIIOI3UCTION 

SI’~~IE~ on spray behavior find app~~atio~ in a 
variety of practicaf situations. Some examples are fire 
suppression, insecticide spraying, spray drying, and in 
many forms of chemical ~we~l~~ which introduce 
one or more of the reactants into the reactor in the 
form of spray. 

The characteristics of a spray can be statistically 
described by a spray equation [l], which is analogo~ 
to the Bolt~an equation in the kinetic theory of gases 
with the exception that the spray distribution function 
may also depend on the sizes of the droplets char- 
acterized by their radii r,. The properties of the spray- 
gas ensemble can then be obtained by solving this spray 
equation together with the various conservation 
relations. 

Only some simplified solutions have been obtained 
for this system of equations, Probert [Z] analyzed the 
steady-state combustion of a dilute spray in a variable- 
area, quasi-one-d~ensional liquid rocket chamber. By 
assuming the effects ofdroplets on the gas are negligible, 
the combustion efficiency of the chamber was deter- 
mined by directly relating the amount of heat release 
to the mass reacted. 

Spalding [3,4] obtained analytic solutions for the 
combustion of monodisperse spray in a constant area 
liquid propellant rocket chamber. The momentum ex- 
change process between the gas and the droplets was 
described by a modified Stokes law accounting, ap- 
prozimately, the reduction in drag due to the outward 
mass transfer at the droplet surface. The phase change 
process was described by the @-law for droplet com- 
bustion, modified by the Frossling [S] correction factor 
to account for the increase in the burning rate due to 
the relative motion between the droplets and the gas. 
Both finite and infinite gas-phase reaction rates were 
eonsidered. 

The present paper extends Spalding’s model to spray 
vaporization in an adiabatic environment. Particular 
attention is placed on such practical situations as in the 
automotive induction system where the inlet air is quite 
coId such that the continuous enrichment (with fuel 
vapor) and the chilling of the gas from the vaporization 
process may result in a significant reduction in the 
driving force for vaporization. In severe eases vapor- 
ization may terminate altogether. Incomplete fuel 
vapori~tion prior to ignition results in droplet difIu- 
sional burning in the combustion cylinders, which 
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could be a significant source: of the total nitric oxide 
emissions From the engine. 

The governing equations are presented in the next 
Section. In Sections 3 and 4, the cases of adiabatic 
evaporation and isothermal evaporation or combus- 
tion are discussed. Results are presented in Section 5. 

2. GOVERNING EQUATICINS 

This study is concerned with a steady, one-dimen- 
sional, constant area, constant density, two-phase flow 
involving evaporating droplets moving in a gaseous 
stream. For consistency, we shall term the vaporizing 
species as the fuel, ail the other gas phase species as 
inert gas, and all the gas-phase species simpIy as gas. 

At the entrance pfane Iocated at x = 0, droplets 
with uniform radius r,a and velacity ~,a are injected 
evenly over the inlet cross-section into a gaseous stream 
with velocity ugO, where the subscripts c, g and 0 
designate the condensed phase, the gas phase and the 
initial state respectively. The initial mass flux fractions 
of the condensed and vaporized fuel are E, and ze 
respectively. The gas has a constant density pe and an 
inlet temperature T,,. Mixing between either the fuel 
vapor or the combustion products with the ambient 
gas Bow is assumed to be i~~~te~y fast such that 
macroscopic property uniformity exists at each cross- 
section of the chamber. The behavior of this two-phase 
system is governed by the follawing equations. 

(a) Dropfet euaporutio~ rate 
When the gas-phase diffusian of mass and heat are 

rate-limiting for the evaporation process, it is shown 
in the Appendix that the rate of decrease of the square 
of the droplet radius T, is given by 

dr:/dt = - (2p,D/p,)In(l-i-B) (1) 

where ff is the gas-phase binary diffusion coefficient, 
pe the dropget density, and B an evaporation transfer 
number defined as 

B = (c~~~)~~- Xi (2) 

with C being the specific heat at constant pressure and 
L the specific heat of vaporization” 

Figure 8 in the Appendix illustrates that for vapor- 
ization in a relatively hot ambient gas stream, T, can 
be approximated by the droplet boiling point &. 
Furthermore, since q also is not expected to be 
changed much by the vaporization process, 3, as given 
by equation (a), is approximately a constant. 

During vaporization in a relatively cold ambient gas 
stream, 3 ceases to be a constant. Under this situation 
the evaporation process can significantly change T,, 
whereas T, is also a sensitive function of Tg and y& 
(Fig. g), where I& is the fuel vapor fraction in the gas 
stream. 

When a relative velocity exists between the droplet 
and the ambient gas, Frossling [S] has shown that the 
droplet evaporation rate, equation (l), is increased by 
a factor 

F(Re, SC) = 1 +0.276/Re1112Sc*‘3 (3) 

LAW 

where Re - 2p,(u,-r&,/p and SC = &p$) are the 
ReynoIds and Schmidt numbers respectively, and p is 
the gas-phase viscosity coefficient. The correction 
factor equation (3) has also been found to be applicable 
to burning droplets [6]. 

(b) The drag law 
The rate of change of the droplet velocity ucr caused 

by the drag force acted on it by the gas motion, is 
given by 

du,/dr = (~/~)(~,/~~)[(~~-u,)~/~,JCL, 

where the drag coefficient CD is given by [4], 

(4) 

Co = [~e-~~(S~)~(Re, Sc)]G(B). (5) 

The term within the square bracket in equation (5) 
provides a close approx~ation to the experimentai~y 
determined drag coefficient curve for a solid sphere. The 
function K(Sc) depends only on the constant parameter 
SC and hence is itself a constant for a given system. 
It is to be determined in such a way that for a given SC, 
the prescribed CD agrees most closely with the experi- 
mentally determined vahtes. For SC = 0.72, it was found 
that with K = 22 such close agreements (Fig. 1) exist 

id ro’ 
Et? 

Fm. 1. Variaus experimental and theoretical curves for 
the drag coefficient of solid spheres. 

with bath the standard drag curve and the results of 
Ingebo [7]. It may also be noted that the insertion 
of the function F(Re, SC) into the definition of CD not 
only improves the accuracy in describing the drag force 
on the droplets, it aiso simplifies the subsequent 
mathematical de~Iopments. Spalding [4] originally 
recognized the mathematical s~rn~~i~~~on offered by 
such a choice and incorporated it in his analysis, with 
K = 24, based on the argument of Reynolds analogy. 

The second term in equation (5) accounts far the 
reduction in drag due to the outward mass transfer at 
the droplet surface during evaporation. Various forms 
of G(B) have been suggested and experimentally tested 
[S], although a definitive choice is still unavailable [9]. 
In the following formulation when B, hence G(B), can 
be considered a constant, the functional form of G(B) 
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is left unspecified. When B varies, in the absence of 
clear superiority, we use the form suggested by 
Spalding [4], 

G(B) = B-’ In(l +B) (6) 

which is the ratio of mass transfer to heat transfer, 
hence mass transfer to momentum transfer through 
Reynolds analogy, for a stationary droplet. For a slowly 
vaporizing droplet B << 1, hence G(B) N 1 and the drag 
reduction is minimum. Further discussions on equation 
(5) can be found in [lo]. 

(c) Mass conservation 
The overall mass conservation can be expressed as 

~~/u~~ = l + [s&l - %)I El- &%31~ (7) 

At this stage the functional forms of q and T,, 
which appear in the definition for B, are still unspecified. 
As will be discussed in Sections 3 and 4, their relations 
with other flow variables depend on the energy ex- 
change process between the condensed and gaseous 
phases. 

(d) General soiutiom 
Defining the non-dimensionalized variables as 

fC = r,/r,,, ULe = n,(l -sc)/uCt ii, = u,(l -E,)/u~~, 

f= l-t[2p,t)ln(l-tB,)IIEp,~~l, 
2 = xPU -~J~,~Wl +~~)I/[~=~~*~~~], 

S = [G(B,)/lnfl +B,)]ScK(Sc)/l6, 

and by using the transformed variables w = 1 - fz and 
U = L&,-u”,, where w and U respectively represent the 
mass fraction of the droplet that has vaporized at f, 
and the instantaneous relative velocity between the 
droplet and the gas, the governing equations become 

dw/df= -(3,‘2)(1-o)“~ 

x [ln(l+ B)/ln(l +B,)JF(Re, SC) (8) 

dU/dr = dii,/dt+ (312) 

where 

x [SU(l -~)-z’3/G(~~)~~(Re, Sc)G(B) (9) 

t& = 1 -&,(l -w) (10) 

and 

F(Re,Sc)= 1+ZlUl’/2(1-c#/6 

Z = 0*276Re~‘2Sc1’3 

The additional advantage in introducing the function 
F(Re, SC) into the definition of C, now becomes ap- 
parent. Dividing equation (9) by equation (8), and using 
equation (lo), the non-~nearity in U appearing in 
F(Re, SC) as well as the dependence of U on 2, can 
be removed by using U and w as the dependent and 
independent variables respectively. Furthermore, if B 
is only a function of w, then U(o) is described by a 
first order, linear, ordinary differential equation whose 
solution is 

where 

P(U) = exp 
is 

o ES/‘(l -N] ~G(~)/G(~*)l 
0 

and 

x [ln(l+B,)/ln(l+B)]dw’ (12) 
> 

U(0) = l-E,-&. (13) 

Equation (11) shows that as w -+ 1, U(w) -+ 0 as would 
be expected. 

Once U(o) is determined, the location of the droplet 
can be found by using equation (8) and the identity 

dco/dt = - ~~(d#/d~) (14) 

such that 

s (u 

x’(w) = 
C%-- wdl 

0 (3/2)( 1 -w’)“3F(Re, SC) 

ln(1 -t Bc) 
x -----dw’. (15) 

ln(l+B) 

The distance _?* over which complete vaporization of 
the droplets occurs is of particular interest and is 
given by 

g* = x’(1) (l6) 

It is signifi~nt to note that the initial droplet size 
r,, does not appear in the non~imensionaliz~ govern- 
ing equations. Therefore results from the present 
analysis are applicable to all values of rco . Furthermore 
from the definition of x” it is seen that the chamber 
length x is proportional to rzo, hence leading to the 
important conclusion that fine atomization is the key 
factor in achieving fast vaporization over a short 
distance. 

Finally we note that for constant Schmidt number 
the parameter S varies inversely with the initial transfer 
number Be. Nence large and smah values of S corre- 
spond to slow and fast rates of vapori~tion respec- 
tively. 

In the following the functional forms of B will be 
specified. Two limiting and physically important cases 
will be examined where the solutions are relatively 
straightforward. 

3. ADIABATIC EVAPORATION 

In the present case the evaporation process con- 
tinuously cools and enriches the gas stream, both of 
these effects, in turn, adversely affect the evaporation 
rate. In extreme cases when a large amount of liquid 
fuel is injected into a su~ciently cold gas stream, com- 
plete vaporization of the droplets may not be possible. 
When the gas stream temperature and fuel vapor con- 
centration reach the corresponding dew point values, 
vaporization and condensation take place at equal rates 
and an equilibrium state is reached for the two-phase 
system. Results from the Appendix indicate that the 
evaporation process is influenced most significantly 
by changes in the ambient conditions when the ambient 
temperature is relatively cold, say T,/Tb < 1. 
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To complete the set of governing equations, ex- 
pressions are needed for the ambient fuel vapor con- 
centration and temperature, as well as the droplet tem- 
perature as functions of say, 0. 

From definition, the fuel vapor concentration is 
given by 

Y,, = (E,W+Eg)/(l --E,+E,W). (17) 

Since the flow is assumed to be incompressible, 
hence low speed, the kinetic energy of the flow com- 
ponents can be neglected compared with their respec- 
tive thermal energy. Conservation of energy is hence 
expressed as 

t&‘2$+E,(l--W)(~-l) = z&o~e+E,(~e-l) (18) 

where T = CT/L, and it has been assumed that the 
specific heat C for the gas and liquid are the same. 

Using equations (10) and (18), 8 can be expressed 
as a function of w. Substituting Y,, and Tg into YFs 
given by equation (A6), noting that z 3 E, it is found 
that Y,, is only a function of z, but not w. Hence Yr, 
and Tc can be determined by solving this function 
together with an independent relation between YFs and 
R that describes the phase change mechanisms at the 
droplet surface (e.g. the Clausius-Clapeyron equation, 
equation (A7), for equilibrium vaporization). Since o 
does not appear in both relations, we reach the con- 
clusion that Y,, and Tc are constants in the system, 
given by 

z= %I (19) 
and 

YF, = [Be+EgMl -m1 +&I) (20) 
where Be = T#,, - Tc, is the initial evaporation transfer 
number. 

Physically since z is elevated and lowered, respec- 
tively, by the continuous enrichment and cooling of the 
gas stream, the present result indicates that these two 
opposing effects balance each other. 

With the above constant established, the tedious 
iterative process (see Appendix) of determing the drop- 
let temperature variation during its motion is thus 
unnecessary. The subsequent mathematical analysis is 
greatly simplified. 

The transfer number B for vaporization is then given 
by the relation 

(l+B)= (l+Bo)[l-&,w/(l-E,+&,o)]. (21) 

Since vaporization occurs only for B > 0, equation 
(21) implies that a necessary condition for complete 
spray vaporization (0 = 1) is 

Bo > EC/(1 -EJ (22) 

If equation (22) is not satisfied, evaporation ceases 
when B = 0, leaving droplets with an equilibrium size 
given by 

?c = [1-Bo(1-E,)/E,]1’3. (23) 

With B given by equation (21) and by using equation 
(6), equation (12) can be readily integrated, giving 

p(o) = {(I - [EC/(1 -E,)B~]w)(~-~~)(‘+~~)/(~ -w)}p (24) 

where 

fl=S/[(l-E,)(l+Bo)-I]. 

For B. >> s,/(l - EJ, the numerator in p(w) can be 
expanded, giving V(w), to first order approximation, as 

(l-o)0 
X-- 

(l-crw) (25) 

where 

a = E,b/[Bo(l +Bo)l. 

It may be noted that c( > 0, j > 0 in this case. 
With V(w) known, equations (15) and (16) then give 

the function z(w) and the minimum length for complete 
vaporization, .?*, respectively. 

4. ISOTHERMAL EVAPORATION AND COMBUSTION 

A very simple solution to equation (11) can be 
obtained by assuming B is a constant such that 

B = B. (26) 

is the needed energy equation. In addition to its 
application for burning sprays in liquid rocket com- 
bustion [3] where an approximately constant com- 
bustion transfer number [l] exists, equation (26) can 
also be used for spray vaporizing in a chamber with 
external heat being added in such a way that (To - TJ 
remains constant. Finally, it is also the zeroth order 
approximation for B in equation (21) for spray apor- 
ization involving a small E, in a hot atmosphere such 
that the condition B. >> E,/( 1 -E,) is satisfied. 

U(o) is now given by 

U(o) = (1 -e-V{t-EC/(1 -a 
x [1-(1-w)“-“]+U(O)}. (27) 

It may be noted that in the present case the constant B. 
appears in the solutions only indirectly through the 
definition of S, which together with E,, Z and Gco, 
completely characterize the problem. For the adiabatic 
evaporation case B. is an additional parameter. 

For the special case of F = 1, explicit expressions 
can be obtained for T(w) and 1* as’ 

w = u-4+(l_s) 0.4E,s(l_A2.5) 

and 

z* = [DC,,+ l%(l-0’4E,)]/[1+ 1.5S] 

where 3, = fz. 

(29) 

Equation (27) indicates that U ---t U(0) and 0 as S -+ 0 
and co respectively, implying that over most of their 
lifetime droplets in systems with large and small S tend 
to be in, and out of, phase with the gas velocity 
respectively. 
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5. RESULTS 

We first present results for the isothermal case 

because the solutions are simpler and phenomena 
common to both the isothermal and adiabatic cases 
can thus be investigated with reduced amount of 
computation. 

Based on the facts that G(B,) ln(1 +B,) ~1! B;‘, that 
the values of B for vaporizing and burning droplets 
are usually in the ranges between O-1 to 1 and 5 to 10 
respectively, and that ScK(Sc)/l6 is on the order of 
unity, the values of S are varied from 0.1 to 20 in 
the present investigation, with small and large values 
of S corresponding to burning and vaporizing droplets 
respectively. The range of Z is varied from 0 to 2, 
corresponding approximately to values of Reo between 
0 and 50. 

0.6 -. 
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FIG. 2. Relative velocity, U, as function of the 
fraction of fuel vaporized, w, for the isothermal 

case. 

Figure 2 shows the variation of the relative velocity, 
U, with the amount of liquid fuel vaporized, w, for the 
extreme cases of slow evaporation (S = 20) and fast 
burning (S = 0.1). For S = 20, the droplet is dragged 
to follow the main gas motion early in its lifetime. The 
relative velocity U is less than @Ol when only 20 per 
cent of the mass has vaporized. For S = 0.1, the burning 
droplet lags behind the gas motion over most of its 
lifetime. U is still 0=8 when about 90 per cent of its 
mass has been consumed. During the last stage, how- 
ever, the droplet adjusts rapidly to follow the mean 
gas motion due to the much increased drag it experi- 
ences as its size approaches zero. 

Figure 3 shows the dimensionless location of the 
droplet as function of w. The optimum chamber length 
2*, for complete consumption, is significantly longer 
for vaporizing droplets than for burning droplets. Since 
the chamber length x is normalized by the evaporation 
rate, viz. ln(l +I&,), the difference in x’ shown in Fig. 3 
exhibits only the effect of drag reduction due to the 
outward mass transfer at the droplet surface. Hence 
such a difference will be even greater when the chamber 
length is expressed in dimensional form since 

1 

1 c 
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w 

FIG. 3. Droplet location 2 as function of 
the fraction of fuel vaporized, w, for the 

isothermal case. 

FIG. 4. Effect of droplet injection velocity CC0 on the 
optimum chamber length P*, for the isothermal case. 

x - n/In(l + B,). It is also shown that the droplet covers 
a proportionately longer distance during the last stage 
of its lifetime, particularly when S is small. Hence for 
low injection velocity flows, a significant reduction in 
the chamber length can be achieved by requiring that 
most, but not all of the droplets are vaporized. 

Figure 4 shows the effect of droplet injection velocity 
EC0 on f*. For droplets with small S values x’* vary 
approximately linearly with i&,, indicating the absence 
of significant drag on the droplet motion. For large S, 
however, x* is almost insensitive to i& because the 
droplet now adjusts rapidly to the gas motion after 
injection. It can thus be concluded that injection 
velocity is critical in the design of burners involving 
burning or fast evaporating droplets, and should be 
kept to as low a value as possible, assuming other 
factors remain constant. Figure 4 also shows that a 
local maxima in P exists when the injection velocity 
ii,* is near the inlet gas velocity, ti,+, as would be 
expected physically. These local maximas do not exist 
for Z = 0 where f* is a linear function of &. 
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FIG. 5. Optimum chamber length P’ as functions of S and 2, 
with E, = 005, for the isothermal case. 

Figure 5 shows z* as functions of S and Z, with 
zero injection velocity and for E, = 0.05. It can be seen 
that increasing Z decreases ?* since the droplets are 
now evaporating or burning faster in the presence of 
increased forced convection. The decrease in x*, how- 
ever, is more prominent for small values of S. From 
2 = 0 to 2, the reductions are 8 and 50 per cent for 
S = 20 and 0.1 respectively. This is because the ben- 
eficial effect of augmenting the evaporation rate due 
to an increase in the initial Reynolds number Re,, 

quickly disappears as U + 0 for the large S case but 
persists throughout most of the droplet lifetime when 
S is small. Finally, results from Figs. 4 and 5 lead to 
the conclusion that for burners involving cornbusting 
or fast vaporizing droplets, an important design cri- 
terion is that the gas inlet velocity should be much 
greater than the droplet injection velocity. 

Results of the adiabatic case are presented in the 
following. To completely characterize the problem, an 
additional parameter, BO, apart from S, E,_, uIso and Z 
is needed. Noting that for the present case S = 
ScK(Sc)/(16B0), and using SC = 072 and K = 22, we 
obtain B. = 0.99/S. Results presented below are for this 
special case, which is usually valid in many practical 
solutions. 

Figure 6 shows x”* as functions of S and Z for CC0 = 0 
and E, = 0.05. For S > 1, due to the continuous decrease 
in the gas temperature, f* is significantly longer than 
the corresponding situation in the isothermal case. As 
required by equation (22), a maximum S, hence a 
minimum Bo, exists beyond which complete vapor- 
ization is not possible. As S approaches this value f* 
grows exponentially large. Since B. is extremely small 
under these situations, a small increment in the inlet 
gas temperature TBo can produce a substantial increase 
in B,, and hence a significant reduction in x’*. 

For small values of S such that B. >> cc/( 1 - E,), the 
adiabatic results are similar to those obtained for the 
isothermal case, as expected. 

Figure 7 shows the location of the droplet as function 
of w for S = 15 and E, = 0.05. It is seen that the droplet 

FIG. 6. Optimum chamber length 1* as functions of S and 2. 
with E, = 0.05, for the adiabatic case. 

w 

FIG. 7. Droplet location Z as function of the 
fraction of fuel vaporized, CO, for the adiabatic 

case. 

covers a substantial fraction of x’* during its last stage 
of evaporation when the gas stream becomes very cold. 
Hence a significant reduction in the chamber length 
can be achieved if one aims for slightly less than 
complete spray vaporization in the chamber. In Fig. 7, 
for Z = 0,25 and 40 per cent reductions in the chamber 
length can be achieved by aiming to vaporize only 
95 and 90 per cent of the spray respectively. 

6. CONCLUSIONS 

The motion of an ensemble of monosize droplets 
undergoing evaporation in an adiabatic or isothermal 
gas stream has been investigated. It is shown that the 
temperature of the droplets remain constant during 
their motion, that fine atomization is a key factor in 
achieving fast vaporization of the spray, that for rapidly 
and slowly vaporizing droplets the values of x* depend 
sensitively on the injection velocity and the inlet gas 
temperature respectively, and that a significant reduc- 
tion in the chamber length can be achieved by aiming 
to vaporize most, but not all, of the spray. 
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APPENDIX 

Quasi-Steady Evaporation of Droplets 

We consider herein the spherically symmetric, quasi- 
steady, isobaric, gas-phase mass and heat diffusion con- 
trolled evaporation of a droplet in a quiescent, unbounded 
atmosphere with known properties T’ and YFI. By further 
assuming that the various transport coefficients and specific 
heats are constant, and that the Lewis number is unity, the 
non-dimensionalized diffusion equations for the fuel vapor 
concentration Y, and temperature T are [l] 

d Y,/di = - M( 1 - YF)/iz (Al) 

dT/di = M(1 + T- z)/i* 6474 

where M = - [p,/(Zp,D)] dri/dt and i = r/r* are the non- 
dimensionalized mass evaporation rate and radial distance r 
from the center of the droplet respectively, and the subscript 
s designates conditions at the droplet surface such that r, 
and T, here respectively correspond to r, and T, in the 
main text. 

Integrating equations (Al) and (A2) between F and the 
ambient gas conditions at infinity, the spatial distributions 
of the fuel vapor and temperature are found to he 

YF = 1 - (1 - YFI) exp( - M/t) (A3) 

T= -(l-x)+(l+T#-z)exp(-M/F). (A4) 

Evaluating equations (A3) and (A4) at the droplet surface 
and solving, the expressions for M and the fuel vapor concen- 
tration at the droplet surface, Y,,, are given by 

~=ln(l+T~-z) (A5) 

Y,, = 1 - (1 - Y&)/( 1 + G - z, (A6) 

in terms of one unknown, T,. Equation (A5) is identical to 
equation (1) with B given by equation (2). 

An independent relation between r and Y, can be ob- 
tained through a description of the phase change process 
at the droplet surface. For equilibrium vaporization such a 
relation is given by the Clausius-Clapeyron equation, 

Y,, = {(l-A)+AexpC-(C’,/~)+(C,/~)l}-’ (A7) 

where c# = C,JR, A is the ratio of the average molecular 
weight of the inert gas to the molecular weight of the fuel, 
and R is the gas constant of the fuel. Equating equations (A6) 
and (A7), z can be solved iteratively. 

Figure 8 shows a typical set of solutions for water droplets 
vaporizing in air. To the left and right of the dew point line, 
corresponding to M = 0, condensation and vaporization 
occur respectively. It is shown that in a relatively cold 
ambient atmosphere, say T,/T, < 1, T,, hence the rate of 
vaporization, is a sensitive function of the ambient tempera- 
ture and fuel vapor concentration; the latter in particular. 
The sensitivity decreases rapidly as TB increases. Hence for 
vaporization in a hot environment, say T,/Tb > 2, B = 
Tn- T* can be essentially treated as a constant, independent 
of variations in ambient conditions. Finally we note that 
when T,/Tb >> 1, T,/T, N 1. 

06 

Tg/T6 

FIG. 8. Droplet temperature as functions of ambient temperature and vapor 
concentration for water droplets vaporizing in air. 
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THEORIE DE LA VAPORISATION DUN BROUILLARD PULVERISE MONODISPERSE 
DANS LES SYSTEMES ADIABATIQUES ET ISOTHERMES 

Rksumb-On Ctudie par voie thtorique le mouvement et le phtnomene associe d’tvaporation a laquelle 
est soumis un brouillard pulvtrise monodisperst dans un courant gazeux isotherme ou adiabatique. Une 
importance particuliere est donnte aux Ccoulements initialement froids auxquels peut manquer l’bnergie 
suffisante pour une vaporisation complete du brouillard. On a obtenu des expressions pour les variations 
spatiales des vitesses et dimensions des gouttelettes, la vitesse et la temperature du gaz, et un critere 
portant sur les conditions initiales assurant une vaporisation complete du brouillard. L’importance 
relative des divers facteurs qui affectant la vaporisation rapide sur les courtes distances fait l’objet 

d’une discussion. 

EINE THEORIE ZUR VERDAMPFUNG VON MONODISPERSEM SPRAY 
IN ADIABATEN UND ISOTHERMEN SYSTEMEN 

Zusammenfassung-Die Bewegung und das damit zusammenhlngende Phiinomen der Verdampfung 
eines monodispersen Sprays in einem isothermen oder adiabaten Gasstrom werden theoretisch untersucht. 
Es wird besonders betont, daO die kalte Anfangsstriimung nicht gentigend Energie besitzt zur vollstlndigen 
Sprayverdampfung. Es werden Beziehungen abgeleitet fur die rilumliche Verteilung der Trbpfchen- 
geschwindigkeit und- groBe, der Geschwindigkeit und Temperatur des Gases und ein Kriterium fur die 
Anfangsbedingungen fur vollstandige Sprayverdampfung. Es wird die relative Bedeutung von ver- 

schiedenen Faktoren diskutiert, die eine schnelle Verdampfung liber kurze Distanzen bewirken. 

TEOPMII MOHO~RCI-IEPCHOI-0 PACI’IbUlMTEJIbHOFO RCI-IAPEHWI B 
A~HAEATRYECKMX I4 M30TEPMHYECKHX CMCTEMAX 

hltIOTaUHfl- &IX CTp,‘kf MOHOJJEfCIIepCHbIX KalEJIb, HCIIapKIOLqHCXn B A30TePMHSeCKOM HJIH antia- 

6aTHSCKOM IIOTOKe Ta3a, IIpOBeAeHO TWpeTEWCKOe ACCJEAOBWlAe ABH)KeHUSI W ApyrUX CBR3aHHbIX 

C JTIiM lIpOI.WCOM SlBJIeHHii. 

0~060 o6paqeao BHWMaHHe Ha CJIy’la2t, KOrAtl lTOTOK BHaYaIIe 5lBJIlIeTCIl XOJIOAHLIM B He o6nanaer 
KOJIHlIeCTBOM 3HeprK&i, HeO6XOAWMblM AJIR nOJIHOl-0 HCIEiPeHHJi KNleJIb. BblBeneHbI BblptWKeHHa 

AJUI IlpOCTpaHCTBeHHblX R3MeHeHllk CKOPOCTH W pa3Mepa KalEJIb, CKOpOCTH H TeMIIepaTypbI l-a% 

Ii KpEiTepHfi Ha’iWIbHbIX YCJIOBllti IIOJlHOrO HCIlaf.EHHSI CTpj’Ef. PaCCMOT~Ha OTHOCBT’ZJIbHaR 3HaYH- 

MOCTb pa3JIWiHbIX &KTOpOB, BJIliirrIOWHX Ha 6blCTpOe HCllapeHHe Ha MaJIbIX PaCCTOSIHHflX. 


